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Study of ZrO2 phase structure and electronic properties

Fan Qunbo*, Wang Fuchi, Zhang Huiling and Zhang Feng

School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China

(Received 19 December 2007; final version received 27 March 2008 )

The phase structure and electronic properties of c-ZrO2, t-ZrO2 and m-ZrO2 are calculated and compared using density
functional theory. By calculating the energies for different lattice constants, the crystal structures of the three zirconia
polymorphs are optimised. The calculation results are in good agreement with related experimental data and the cohesive
energies do reflect the relative phase stability of the three zirconia polymorphs. The valence electronic density of states and
the charge distributions on some typical planes are presented and discussed to investigate the valence electronic structure,
the special electronic properties, and the ZrZO bond strength. The calculation results in this paper would be helpful to
further predict the zirconia phase transition and some basic physical properties.
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1. Introduction

Due to their prominent physical and chemical properties,

ZrO2 ceramic materials have been widely used in modern

engineering and industry fields, such as fuel cells [1],

thermal barrier coatings [2], refractory materials [3],

catalysts [4] and so on. It is well known, however, that at

ambient pressure ZrO2 itself is not stable, which has three

polymorphic phases: monoclinic (m-ZrO2, p21/c space

group), tetragonal (t-ZrO2, p42/nmc space group) and

cubic (c-ZrO2, fm3m space group), as illustrated in

Figure 1. To better understand and control ZrO2’s

properties in practical applications, it is necessary to

investigate its phase structures and corresponding charge

characteristics, so as to reveal the inner mechanism of the

relative stability of these three polymorphic phases.

Up to the present time, density functional theory (DFT)

[5] has become one of the most important and valid method

to investigate the charge distribution of crystals, and

investigate the relationship between micro and macro

properties in ground state, especially in quantum chemistry

calculation of multi-particle systems. The most out-

standing advantage for DFT is that all the calculations

are performed without any input from experiment. Jomard

[6] calculated the phase stability of different ZrO2

polymorphs in the framework of DFT, and revealed the

tendency of t–c phase transition. Kuwabara [7] success-

fully computed the Helmholtz free energies of t- and

m-ZrO2, indicating that t-ZrO2 become more stable than

m-ZrO2 at temperatures higher than 1350K, and found

that vibrational entropy of Zr and O ions is attributed to the

stabilisation of t-ZrO2 at elevated temperatures.

The relationship between phase structures and charge

characteristics, however, still needs further studies.

Within the framework of DFT, we use the computer

code CASTEP [8] to study ZrO2 crystal structures,

cohesive energies, density of states (DOS) of valence

electrons, as well as spatial distribution of charges, so as to

investigate the underlying relationship between the ZrO2

crystal structures and charge characteristics.

2. Computation details

All the calculations in this paper are done for the ground

state of ZrO2 crystal structures, and exchange and

correlation functional is given by the generalised gradient

approximation as proposed by Wang and Perdew [9].

The atomic reference configurations are 4d25s2 for Zr and

2s22p4 for O. The k-point meshes of Brillouin zone

sampling in primitive cells, based on the Monkhorst–Pack

scheme [10], are 4 £ 4 £ 4 for c-ZrO2 (10 irreducible

points), 5 £ 5 £ 3 t-ZrO2 (12 irreducible points) and

3 £ 3 £ 3 for m-ZrO2 (10 irreducible points), in order

to obtain energy convergence #2 £ 1025 eV/atom.

As illustrated in Figure 2, input the initial charge

density and wave function of crystal structures, then adjust

the crystal structure to get new charge density and solve

the corresponding energy and force, until both the energy

and the force meet the convergence criterion. Finally, the

DOS of valence electrons and charge distribution in space

are output based on the optimised crystal structures.
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3. Results and discussion

3.1 Phase structure and stability

As shown in Figure 1, at the atomic scale, the 8-coordinated

zirconium ions form a face-centred cubic lattice and each

oxygen ion is located in a 4-coordinated zirconium

tetrahedron; t-ZrO2 is in p42/nmc space group, which can

be derived by stretching the cubic one along [001]

directions; m-ZrO2 is in p21/c space group, which can be

described as a distorted fluorite structure with the Zr atoms

in seven-fold coordinations sites. In addition, there are two

oxygen sites in the m-ZrO2 lattice: OI and OII. Table 1 lists

the internal structural parameters of Zr, O atoms for three

ZrO2 polymorphs. It can be seen that the calculation results

agree very well with experimental observations.

As shown in Table 2, the calculated theoretical lattice

components for three ZrO2 polymorphs are compared with

previous calculation results and experimental data. It can

be seen that both the previous calculation results and the

experimental data validate the reliability of the present

work. Based on the basic geometry parameters of crystal

structures in Tables 1 and 2, the cohesive energies of three

ZrO2 polymorphs are calculated, which is dependent on

the lattice constants, and the theoretical cohesive energy

corresponds to the minimum value.

Table 3 lists the cohesive energies for the geometry-

optimised c-ZrO2, t-ZrO2 and m-ZrO2, with the value of

229.73, 229.81 and 29.93 eV, respectively, which are

compared with calculation results reported by other

literatures [3,4]. Though the results are somewhat different

due to different predefined calculation parameters, such as

pseudopotentials, exchange correlation functionals, k-point

meshes, a definite relationship can be found: Ec-ZrO2
.

Et-ZrO2
. Em-ZrO2

. Such relationship is consistent with the

fact that m-ZrO2 is the most stable phase under ground state.

3.2 Charge characteristics

3.2.1 Density of states (DOS)

Once the crystal structure is determined, the corresponding

valence DOS of the structure can be further determined.

Figures 3–5 show the total DOS (TDOS) for c-ZrO2,

t-ZrO2 and m-ZrO2, as well as the partial DOS (PDOS) of

Zr and O atoms. Since there are two oxygen sites in the

Table 1. Calculated internal structural parameters of ZrO2 polymorphs in comparison with experimental data.

Calculations Experiments [11–13]

Atom type Wyckoff notation x y z x y z

c-ZrO2 (fm3-m)
Zr 4a 0 0 0 0 0 0
O 8c 0.25 0.25 0.25 0.25 0.25 0.25

t-ZrO2 (p42/nmc)
Zr 2a 0 0 0 0 0 0
O 4d 0 0.5 0.1985 0 0.5 0.1980

m-ZrO2 (p21/c)
Zr 4e 0.2728 0.0337 0.2088 0.2744 0.0394 0.2084
OI 4e 0.0733 0.3133 0.3046 0.0614 0.3263 0.3404
OII 4e 0.4619 0.7882 0.4362 0.4495 0.7575 0.4757

Figure 1. Three polymorphic phases of ZrO2.

Figure 2. Flow chart of DFT calculation scheme.
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m-ZrO2, we present the corresponding PDOS in Figure 5.

Here, Fermi level is at the value of 0 eV for all DOS.

It can be readily seen that these three phases have

rather similar DOS features. The bands, spanning between

218 and214 eV are mostly due to O2s orbital. The bands

in the energy range from25 to20 eV, are mainly O2p in

character, and partial Zr4d orbital also occupy the same

range, indicating a strong ZrZO covalence interaction.

The band gap for c-ZrO2, t-ZrO2 and m-ZrO2 is 2.40, 3.17

and 2.98 eV, respectively, reflecting an insulating feature

for ZrO2 as observed experimentally.

3.2.2 Charge densities

To compare the charge distribution characteristics for

three ZrO2 polymorphs, the charge distribution on a

typical plane is presented in Figures 6–8, respectively.

Figure 6 shows the charge distribution on a typical c-ZrO2

plane with miller index (1 1 22) and across the point

(2.53, 2.53, 2.53); Figure 7 shows the charge distribution

on a typical t-ZrO2 plane with miller indices (0 1 0) and

across the point (1.82, 1.82, 2.64); and Figure 8 shows the

Table 2. Theoretical lattice constants obtained for three ZrO2

polymorphs, compared with previous calculations and
experiments.

This
work

Calculations
[7]

Calculations
[14]

Experiments
[15]

c-ZrO2 a (Å) 5.092 5.145 5.0371 5.108
t-ZrO2 a (Å) 3.642 3.642 3.5567 3.591

c (Å) 5.275 5.295 5.1044 5.169
m-ZrO2 a (Å) 5.158 5.211 5.1083 5.1505

b (Å) 5.230 5.286 5.1695 5.2116
c (Å) 5.340 5.388 5.2717 5.3173
b (8) 99.56 99.59 99.21 99.23

Figure 3. DOS of c-ZrO2.

Table 3. Cohesive energies for different ZrO2 polymorphs.

This work
(eV)

Computation
results [7]

Computation
results [6]

c-ZrO2 229.73 228.413 226.18
t-ZrO2 229.81 228.503 226.20
m-ZrO2 229.93 228.612 226.18

Figure 4. DOS of t-ZrO2.
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charge distribution on a typical m-ZrO2 plane with miller

indices (20.68 0.68 20.27) and across the point (2.48,

2.56, 2.20). As shown in these figures, the maximum

charge density for c-ZrO2, t-ZrO2 and m-ZrO2 is 5.098,

7.234 and 7.261 electrons/Å3, respectively, which is

agreement with phase stability tendency at ground state.

Namely, the larger the maximum charge density is, the

stronger the bonding strength is, and the more stable the

phase is. In addition, high-density charge exists primarily

between Zr and O atoms, also reflecting a strong ZrZO

covalence interaction as illustrated in Section 3.2.1.

4. Conclusions

Based on DFT, the crystal and electronic structures of

c-ZrO2, t-ZrO2 and m-ZrO2 are studied. Geometry

optimisation for three ZrO2 polymorphs at ground state

is conducted, and the cohesive energies account for the

related phase stability; DOS and PDOS of three ZrO2

polymorphs are calculated, indicating a strong ZrZO

covalence interaction, which is further validated by

calculating the charge distribution on typical ZrO2 crystal

planes. It is found that the larger the maximum charge

density is, the stronger the bonding strength is, and the

more stable the phase is. The relationship between the

phase structures and electronic properties provides an

additional way to further investigate the micro phase

transition process of ZrO2, as well as some basic physical

properties.

Figure 5. DOS of m-ZrO2.

Figure 6. Charge distribution on a typical plane of c-ZrO2.

Figure 7. Charge distribution on a typical plane of t-ZrO2.
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